%PDF- %PDF-
Direktori : /proc/self/root/proc/thread-self/root/usr/include/mysql/server/private/ |
Current File : //proc/self/root/proc/thread-self/root/usr/include/mysql/server/private/mem_root_array.h |
/* Copyright (c) 2011, 2012, Oracle and/or its affiliates. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */ #ifndef MEM_ROOT_ARRAY_INCLUDED #define MEM_ROOT_ARRAY_INCLUDED #include <my_alloc.h> /** A typesafe replacement for DYNAMIC_ARRAY. We use MEM_ROOT for allocating storage, rather than the C++ heap. The interface is chosen to be similar to std::vector. @remark Unlike DYNAMIC_ARRAY, elements are properly copied (rather than memcpy()d) if the underlying array needs to be expanded. @remark Depending on has_trivial_destructor, we destroy objects which are removed from the array (including when the array object itself is destroyed). @remark Note that MEM_ROOT has no facility for reusing free space, so don't use this if multiple re-expansions are likely to happen. @param Element_type The type of the elements of the container. Elements must be copyable. @param has_trivial_destructor If true, we don't destroy elements. We could have used type traits to determine this. __has_trivial_destructor is supported by some (but not all) compilers we use. */ template<typename Element_type, bool has_trivial_destructor> class Mem_root_array { public: /// Convenience typedef, same typedef name as std::vector typedef Element_type value_type; Mem_root_array(MEM_ROOT *root) : m_root(root), m_array(NULL), m_size(0), m_capacity(0) { DBUG_ASSERT(m_root != NULL); } Mem_root_array(MEM_ROOT *root, size_t n, const value_type &val= value_type()) : m_root(root), m_array(NULL), m_size(0), m_capacity(0) { resize(n, val); } ~Mem_root_array() { clear(); } Element_type &at(size_t n) { DBUG_ASSERT(n < size()); return m_array[n]; } const Element_type &at(size_t n) const { DBUG_ASSERT(n < size()); return m_array[n]; } Element_type &operator[](size_t n) { return at(n); } const Element_type &operator[](size_t n) const { return at(n); } Element_type &back() { return at(size() - 1); } const Element_type &back() const { return at(size() - 1); } // Returns a pointer to the first element in the array. Element_type *begin() { return &m_array[0]; } const Element_type *begin() const { return &m_array[0]; } // Returns a pointer to the past-the-end element in the array. Element_type *end() { return &m_array[size()]; } const Element_type *end() const { return &m_array[size()]; } // Erases all of the elements. void clear() { if (!empty()) chop(0); } /* Chops the tail off the array, erasing all tail elements. @param pos Index of first element to erase. */ void chop(const size_t pos) { DBUG_ASSERT(pos < m_size); if (!has_trivial_destructor) { for (size_t ix= pos; ix < m_size; ++ix) { Element_type *p= &m_array[ix]; p->~Element_type(); // Destroy discarded element. } } m_size= pos; } /* Reserves space for array elements. Copies over existing elements, in case we are re-expanding the array. @param n number of elements. @retval true if out-of-memory, false otherwise. */ bool reserve(size_t n) { if (n <= m_capacity) return false; void *mem= alloc_root(m_root, n * element_size()); if (!mem) return true; Element_type *array= static_cast<Element_type*>(mem); // Copy all the existing elements into the new array. for (size_t ix= 0; ix < m_size; ++ix) { Element_type *new_p= &array[ix]; Element_type *old_p= &m_array[ix]; new (new_p) Element_type(*old_p); // Copy into new location. if (!has_trivial_destructor) old_p->~Element_type(); // Destroy the old element. } // Forget the old array. m_array= array; m_capacity= n; return false; } /* Adds a new element at the end of the array, after its current last element. The content of this new element is initialized to a copy of the input argument. @param element Object to copy. @retval true if out-of-memory, false otherwise. */ bool push_back(const Element_type &element) { const size_t min_capacity= 20; const size_t expansion_factor= 2; if (0 == m_capacity && reserve(min_capacity)) return true; if (m_size == m_capacity && reserve(m_capacity * expansion_factor)) return true; Element_type *p= &m_array[m_size++]; new (p) Element_type(element); return false; } /** Removes the last element in the array, effectively reducing the container size by one. This destroys the removed element. */ void pop_back() { DBUG_ASSERT(!empty()); if (!has_trivial_destructor) back().~Element_type(); m_size-= 1; } /** Resizes the container so that it contains n elements. If n is smaller than the current container size, the content is reduced to its first n elements, removing those beyond (and destroying them). If n is greater than the current container size, the content is expanded by inserting at the end as many elements as needed to reach a size of n. If val is specified, the new elements are initialized as copies of val, otherwise, they are value-initialized. If n is also greater than the current container capacity, an automatic reallocation of the allocated storage space takes place. Notice that this function changes the actual content of the container by inserting or erasing elements from it. */ void resize(size_t n, const value_type &val= value_type()) { if (n == m_size) return; if (n > m_size) { if (!reserve(n)) { while (n != m_size) push_back(val); } return; } if (!has_trivial_destructor) { while (n != m_size) pop_back(); } m_size= n; } size_t capacity() const { return m_capacity; } size_t element_size() const { return sizeof(Element_type); } bool empty() const { return size() == 0; } size_t size() const { return m_size; } const MEM_ROOT *mem_root() const { return m_root; } private: MEM_ROOT *const m_root; Element_type *m_array; size_t m_size; size_t m_capacity; // Not (yet) implemented. Mem_root_array(const Mem_root_array&); Mem_root_array &operator=(const Mem_root_array&); }; #endif // MEM_ROOT_ARRAY_INCLUDED