%PDF- %PDF-
Direktori : /proc/self/root/opt/hc_python/lib/python3.8/site-packages/pydantic/ |
Current File : //proc/self/root/opt/hc_python/lib/python3.8/site-packages/pydantic/root_model.py |
"""RootModel class and type definitions.""" from __future__ import annotations as _annotations import typing from copy import copy, deepcopy from pydantic_core import PydanticUndefined from . import PydanticUserError from ._internal import _model_construction, _repr from .main import BaseModel, _object_setattr if typing.TYPE_CHECKING: from typing import Any from typing_extensions import Literal, Self, dataclass_transform from .fields import Field as PydanticModelField from .fields import PrivateAttr as PydanticModelPrivateAttr # dataclass_transform could be applied to RootModel directly, but `ModelMetaclass`'s dataclass_transform # takes priority (at least with pyright). We trick type checkers into thinking we apply dataclass_transform # on a new metaclass. @dataclass_transform(kw_only_default=False, field_specifiers=(PydanticModelField, PydanticModelPrivateAttr)) class _RootModelMetaclass(_model_construction.ModelMetaclass): ... else: _RootModelMetaclass = _model_construction.ModelMetaclass __all__ = ('RootModel',) RootModelRootType = typing.TypeVar('RootModelRootType') class RootModel(BaseModel, typing.Generic[RootModelRootType], metaclass=_RootModelMetaclass): """Usage docs: https://docs.pydantic.dev/2.8/concepts/models/#rootmodel-and-custom-root-types A Pydantic `BaseModel` for the root object of the model. Attributes: root: The root object of the model. __pydantic_root_model__: Whether the model is a RootModel. __pydantic_private__: Private fields in the model. __pydantic_extra__: Extra fields in the model. """ __pydantic_root_model__ = True __pydantic_private__ = None __pydantic_extra__ = None root: RootModelRootType def __init_subclass__(cls, **kwargs): extra = cls.model_config.get('extra') if extra is not None: raise PydanticUserError( "`RootModel` does not support setting `model_config['extra']`", code='root-model-extra' ) super().__init_subclass__(**kwargs) def __init__(self, /, root: RootModelRootType = PydanticUndefined, **data) -> None: # type: ignore __tracebackhide__ = True if data: if root is not PydanticUndefined: raise ValueError( '"RootModel.__init__" accepts either a single positional argument or arbitrary keyword arguments' ) root = data # type: ignore self.__pydantic_validator__.validate_python(root, self_instance=self) __init__.__pydantic_base_init__ = True # pyright: ignore[reportFunctionMemberAccess] @classmethod def model_construct(cls, root: RootModelRootType, _fields_set: set[str] | None = None) -> Self: # type: ignore """Create a new model using the provided root object and update fields set. Args: root: The root object of the model. _fields_set: The set of fields to be updated. Returns: The new model. Raises: NotImplemented: If the model is not a subclass of `RootModel`. """ return super().model_construct(root=root, _fields_set=_fields_set) def __getstate__(self) -> dict[Any, Any]: return { '__dict__': self.__dict__, '__pydantic_fields_set__': self.__pydantic_fields_set__, } def __setstate__(self, state: dict[Any, Any]) -> None: _object_setattr(self, '__pydantic_fields_set__', state['__pydantic_fields_set__']) _object_setattr(self, '__dict__', state['__dict__']) def __copy__(self) -> Self: """Returns a shallow copy of the model.""" cls = type(self) m = cls.__new__(cls) _object_setattr(m, '__dict__', copy(self.__dict__)) _object_setattr(m, '__pydantic_fields_set__', copy(self.__pydantic_fields_set__)) return m def __deepcopy__(self, memo: dict[int, Any] | None = None) -> Self: """Returns a deep copy of the model.""" cls = type(self) m = cls.__new__(cls) _object_setattr(m, '__dict__', deepcopy(self.__dict__, memo=memo)) # This next line doesn't need a deepcopy because __pydantic_fields_set__ is a set[str], # and attempting a deepcopy would be marginally slower. _object_setattr(m, '__pydantic_fields_set__', copy(self.__pydantic_fields_set__)) return m if typing.TYPE_CHECKING: def model_dump( # type: ignore self, *, mode: Literal['json', 'python'] | str = 'python', include: Any = None, exclude: Any = None, context: dict[str, Any] | None = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool | Literal['none', 'warn', 'error'] = True, serialize_as_any: bool = False, ) -> Any: """This method is included just to get a more accurate return type for type checkers. It is included in this `if TYPE_CHECKING:` block since no override is actually necessary. See the documentation of `BaseModel.model_dump` for more details about the arguments. Generally, this method will have a return type of `RootModelRootType`, assuming that `RootModelRootType` is not a `BaseModel` subclass. If `RootModelRootType` is a `BaseModel` subclass, then the return type will likely be `dict[str, Any]`, as `model_dump` calls are recursive. The return type could even be something different, in the case of a custom serializer. Thus, `Any` is used here to catch all of these cases. """ ... def __eq__(self, other: Any) -> bool: if not isinstance(other, RootModel): return NotImplemented return self.model_fields['root'].annotation == other.model_fields['root'].annotation and super().__eq__(other) def __repr_args__(self) -> _repr.ReprArgs: yield 'root', self.root