%PDF- %PDF-
Direktori : /opt/alt/ruby19/lib64/ruby/1.9.1/ |
Current File : //opt/alt/ruby19/lib64/ruby/1.9.1/cmath.rb |
## # = CMath # # CMath is a library that provides trigonometric and transcendental # functions for complex numbers. # # == Usage # # To start using this library, simply: # # require "cmath" # # Square root of a negative number is a complex number. # # CMath.sqrt(-9) #=> 0+3.0i # module CMath include Math alias exp! exp alias log! log alias log2! log2 alias log10! log10 alias sqrt! sqrt alias cbrt! cbrt alias sin! sin alias cos! cos alias tan! tan alias sinh! sinh alias cosh! cosh alias tanh! tanh alias asin! asin alias acos! acos alias atan! atan alias atan2! atan2 alias asinh! asinh alias acosh! acosh alias atanh! atanh ## # Math::E raised to the +z+ power # # exp(Complex(0,0)) #=> 1.0+0.0i # exp(Complex(0,PI)) #=> -1.0+1.2246467991473532e-16i # exp(Complex(0,PI/2.0)) #=> 6.123233995736766e-17+1.0i def exp(z) begin if z.real? exp!(z) else ere = exp!(z.real) Complex(ere * cos!(z.imag), ere * sin!(z.imag)) end rescue NoMethodError handle_no_method_error end end ## # Returns the natural logarithm of Complex. If a second argument is given, # it will be the base of logarithm. # # log(Complex(0,0)) #=> -Infinity+0.0i def log(*args) begin z, b = args unless b.nil? || b.kind_of?(Numeric) raise TypeError, "Numeric Number required" end if z.real? and z >= 0 and (b.nil? or b >= 0) log!(*args) else a = Complex(log!(z.abs), z.arg) if b a /= log(b) end a end rescue NoMethodError handle_no_method_error end end ## # returns the base 2 logarithm of +z+ def log2(z) begin if z.real? and z >= 0 log2!(z) else log(z) / log!(2) end rescue NoMethodError handle_no_method_error end end ## # returns the base 10 logarithm of +z+ def log10(z) begin if z.real? and z >= 0 log10!(z) else log(z) / log!(10) end rescue NoMethodError handle_no_method_error end end ## # Returns the non-negative square root of Complex. # sqrt(-1) #=> 0+1.0i # sqrt(Complex(-1,0)) #=> 0.0+1.0i # sqrt(Complex(0,8)) #=> 2.0+2.0i def sqrt(z) begin if z.real? if z < 0 Complex(0, sqrt!(-z)) else sqrt!(z) end else if z.imag < 0 || (z.imag == 0 && z.imag.to_s[0] == '-') sqrt(z.conjugate).conjugate else r = z.abs x = z.real Complex(sqrt!((r + x) / 2.0), sqrt!((r - x) / 2.0)) end end rescue NoMethodError handle_no_method_error end end ## # returns the principal value of the cube root of +z+ def cbrt(z) z ** (1.0/3) end ## # returns the sine of +z+, where +z+ is given in radians def sin(z) begin if z.real? sin!(z) else Complex(sin!(z.real) * cosh!(z.imag), cos!(z.real) * sinh!(z.imag)) end rescue NoMethodError handle_no_method_error end end ## # returns the cosine of +z+, where +z+ is given in radians def cos(z) begin if z.real? cos!(z) else Complex(cos!(z.real) * cosh!(z.imag), -sin!(z.real) * sinh!(z.imag)) end rescue NoMethodError handle_no_method_error end end ## # returns the tangent of +z+, where +z+ is given in radians def tan(z) begin if z.real? tan!(z) else sin(z) / cos(z) end rescue NoMethodError handle_no_method_error end end ## # returns the hyperbolic sine of +z+, where +z+ is given in radians def sinh(z) begin if z.real? sinh!(z) else Complex(sinh!(z.real) * cos!(z.imag), cosh!(z.real) * sin!(z.imag)) end rescue NoMethodError handle_no_method_error end end ## # returns the hyperbolic cosine of +z+, where +z+ is given in radians def cosh(z) begin if z.real? cosh!(z) else Complex(cosh!(z.real) * cos!(z.imag), sinh!(z.real) * sin!(z.imag)) end rescue NoMethodError handle_no_method_error end end ## # returns the hyperbolic tangent of +z+, where +z+ is given in radians def tanh(z) begin if z.real? tanh!(z) else sinh(z) / cosh(z) end rescue NoMethodError handle_no_method_error end end ## # returns the arc sine of +z+ def asin(z) begin if z.real? and z >= -1 and z <= 1 asin!(z) else (-1.0).i * log(1.0.i * z + sqrt(1.0 - z * z)) end rescue NoMethodError handle_no_method_error end end ## # returns the arc cosine of +z+ def acos(z) begin if z.real? and z >= -1 and z <= 1 acos!(z) else (-1.0).i * log(z + 1.0.i * sqrt(1.0 - z * z)) end rescue NoMethodError handle_no_method_error end end ## # returns the arc tangent of +z+ def atan(z) begin if z.real? atan!(z) else 1.0.i * log((1.0.i + z) / (1.0.i - z)) / 2.0 end rescue NoMethodError handle_no_method_error end end ## # returns the arc tangent of +y+ divided by +x+ using the signs of +y+ and # +x+ to determine the quadrant def atan2(y,x) begin if y.real? and x.real? atan2!(y,x) else (-1.0).i * log((x + 1.0.i * y) / sqrt(x * x + y * y)) end rescue NoMethodError handle_no_method_error end end ## # returns the inverse hyperbolic sine of +z+ def asinh(z) begin if z.real? asinh!(z) else log(z + sqrt(1.0 + z * z)) end rescue NoMethodError handle_no_method_error end end ## # returns the inverse hyperbolic cosine of +z+ def acosh(z) begin if z.real? and z >= 1 acosh!(z) else log(z + sqrt(z * z - 1.0)) end rescue NoMethodError handle_no_method_error end end ## # returns the inverse hyperbolic tangent of +z+ def atanh(z) begin if z.real? and z >= -1 and z <= 1 atanh!(z) else log((1.0 + z) / (1.0 - z)) / 2.0 end rescue NoMethodError handle_no_method_error end end module_function :exp! module_function :exp module_function :log! module_function :log module_function :log2! module_function :log2 module_function :log10! module_function :log10 module_function :sqrt! module_function :sqrt module_function :cbrt! module_function :cbrt module_function :sin! module_function :sin module_function :cos! module_function :cos module_function :tan! module_function :tan module_function :sinh! module_function :sinh module_function :cosh! module_function :cosh module_function :tanh! module_function :tanh module_function :asin! module_function :asin module_function :acos! module_function :acos module_function :atan! module_function :atan module_function :atan2! module_function :atan2 module_function :asinh! module_function :asinh module_function :acosh! module_function :acosh module_function :atanh! module_function :atanh module_function :frexp module_function :ldexp module_function :hypot module_function :erf module_function :erfc module_function :gamma module_function :lgamma private def handle_no_method_error # :nodoc: if $!.name == :real? raise TypeError, "Numeric Number required" else raise end end module_function :handle_no_method_error end