%PDF- %PDF-
Direktori : /proc/thread-self/root/proc/thread-self/root/opt/alt/openssl/share/man/man3/ |
Current File : //proc/thread-self/root/proc/thread-self/root/opt/alt/openssl/share/man/man3/EVP_BytesToKey.3ssl |
.\" Automatically generated by Pod::Man 4.11 (Pod::Simple 3.35) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. \*(C+ will .\" give a nicer C++. Capital omega is used to do unbreakable dashes and .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff, .\" nothing in troff, for use with C<>. .tr \(*W- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. .ie \n(.g .ds Aq \(aq .el .ds Aq ' .\" .\" If the F register is >0, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .\" .\" Avoid warning from groff about undefined register 'F'. .de IX .. .nr rF 0 .if \n(.g .if rF .nr rF 1 .if (\n(rF:(\n(.g==0)) \{\ . if \nF \{\ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{\ . nr % 0 . nr F 2 . \} . \} .\} .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} .rm #[ #] #H #V #F C .\" ======================================================================== .\" .IX Title "EVP_BytesToKey 3" .TH EVP_BytesToKey 3 "2019-12-20" "1.0.2u" "OpenSSL" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l .nh .SH "NAME" EVP_BytesToKey \- password based encryption routine .SH "SYNOPSIS" .IX Header "SYNOPSIS" .Vb 1 \& #include <openssl/evp.h> \& \& int EVP_BytesToKey(const EVP_CIPHER *type,const EVP_MD *md, \& const unsigned char *salt, \& const unsigned char *data, int datal, int count, \& unsigned char *key,unsigned char *iv); .Ve .SH "DESCRIPTION" .IX Header "DESCRIPTION" \&\fBEVP_BytesToKey()\fR derives a key and \s-1IV\s0 from various parameters. \fBtype\fR is the cipher to derive the key and \s-1IV\s0 for. \fBmd\fR is the message digest to use. The \fBsalt\fR parameter is used as a salt in the derivation: it should point to an 8 byte buffer or \s-1NULL\s0 if no salt is used. \fBdata\fR is a buffer containing \&\fBdatal\fR bytes which is used to derive the keying data. \fBcount\fR is the iteration count to use. The derived key and \s-1IV\s0 will be written to \fBkey\fR and \fBiv\fR respectively. .SH "NOTES" .IX Header "NOTES" A typical application of this function is to derive keying material for an encryption algorithm from a password in the \fBdata\fR parameter. .PP Increasing the \fBcount\fR parameter slows down the algorithm which makes it harder for an attacker to peform a brute force attack using a large number of candidate passwords. .PP If the total key and \s-1IV\s0 length is less than the digest length and \&\fB\s-1MD5\s0\fR is used then the derivation algorithm is compatible with PKCS#5 v1.5 otherwise a non standard extension is used to derive the extra data. .PP Newer applications should use a more modern algorithm such as \s-1PBKDF2\s0 as defined in PKCS#5v2.1 and provided by \s-1PKCS5_PBKDF2_HMAC.\s0 .SH "KEY DERIVATION ALGORITHM" .IX Header "KEY DERIVATION ALGORITHM" The key and \s-1IV\s0 is derived by concatenating D_1, D_2, etc until enough data is available for the key and \s-1IV.\s0 D_i is defined as: .PP .Vb 1 \& D_i = HASH^count(D_(i\-1) || data || salt) .Ve .PP where || denotes concatentaion, D_0 is empty, \s-1HASH\s0 is the digest algorithm in use, HASH^1(data) is simply \s-1HASH\s0(data), HASH^2(data) is \s-1HASH\s0(\s-1HASH\s0(data)) and so on. .PP The initial bytes are used for the key and the subsequent bytes for the \s-1IV.\s0 .SH "RETURN VALUES" .IX Header "RETURN VALUES" If \fBdata\fR is \s-1NULL,\s0 then \fBEVP_BytesToKey()\fR returns the number of bytes needed to store the derived key. Otherwise, \fBEVP_BytesToKey()\fR returns the size of the derived key in bytes, or 0 on error. .SH "SEE ALSO" .IX Header "SEE ALSO" \&\fBevp\fR\|(3), \fBrand\fR\|(3), \&\fBEVP_EncryptInit\fR\|(3) .SH "HISTORY" .IX Header "HISTORY"