%PDF- %PDF-
Direktori : /proc/thread-self/root/proc/self/root/proc/self/root/opt/alt/ruby18/lib64/ruby/1.8/ |
Current File : //proc/thread-self/root/proc/self/root/proc/self/root/opt/alt/ruby18/lib64/ruby/1.8/set.rb |
#!/usr/bin/env ruby #-- # set.rb - defines the Set class #++ # Copyright (c) 2002-2008 Akinori MUSHA <knu@iDaemons.org> # # Documentation by Akinori MUSHA and Gavin Sinclair. # # All rights reserved. You can redistribute and/or modify it under the same # terms as Ruby. # # $Id: set.rb 17051 2008-06-09 09:20:43Z knu $ # # == Overview # # This library provides the Set class, which deals with a collection # of unordered values with no duplicates. It is a hybrid of Array's # intuitive inter-operation facilities and Hash's fast lookup. If you # need to keep values ordered, use the SortedSet class. # # The method +to_set+ is added to Enumerable for convenience. # # See the Set class for an example of usage. # # Set implements a collection of unordered values with no duplicates. # This is a hybrid of Array's intuitive inter-operation facilities and # Hash's fast lookup. # # Several methods accept any Enumerable object (implementing +each+) # for greater flexibility: new, replace, merge, subtract, |, &, -, ^. # # The equality of each couple of elements is determined according to # Object#eql? and Object#hash, since Set uses Hash as storage. # # Finally, if you are using class Set, you can also use Enumerable#to_set # for convenience. # # == Example # # require 'set' # s1 = Set.new [1, 2] # -> #<Set: {1, 2}> # s2 = [1, 2].to_set # -> #<Set: {1, 2}> # s1 == s2 # -> true # s1.add("foo") # -> #<Set: {1, 2, "foo"}> # s1.merge([2, 6]) # -> #<Set: {6, 1, 2, "foo"}> # s1.subset? s2 # -> false # s2.subset? s1 # -> true # # == Contact # # - Akinori MUSHA <knu@iDaemons.org> (current maintainer) # class Set include Enumerable # Creates a new set containing the given objects. def self.[](*ary) new(ary) end # Creates a new set containing the elements of the given enumerable # object. # # If a block is given, the elements of enum are preprocessed by the # given block. def initialize(enum = nil, &block) # :yields: o @hash ||= Hash.new enum.nil? and return if block enum.each { |o| add(block[o]) } else merge(enum) end end # Copy internal hash. def initialize_copy(orig) @hash = orig.instance_eval{@hash}.dup end # Returns the number of elements. def size @hash.size end alias length size # Returns true if the set contains no elements. def empty? @hash.empty? end # Removes all elements and returns self. def clear @hash.clear self end # Replaces the contents of the set with the contents of the given # enumerable object and returns self. def replace(enum) if enum.class == self.class @hash.replace(enum.instance_eval { @hash }) else enum.is_a?(Enumerable) or raise ArgumentError, "value must be enumerable" clear enum.each { |o| add(o) } end self end # Converts the set to an array. The order of elements is uncertain. def to_a @hash.keys end def flatten_merge(set, seen = Set.new) set.each { |e| if e.is_a?(Set) if seen.include?(e_id = e.object_id) raise ArgumentError, "tried to flatten recursive Set" end seen.add(e_id) flatten_merge(e, seen) seen.delete(e_id) else add(e) end } self end protected :flatten_merge # Returns a new set that is a copy of the set, flattening each # containing set recursively. def flatten self.class.new.flatten_merge(self) end # Equivalent to Set#flatten, but replaces the receiver with the # result in place. Returns nil if no modifications were made. def flatten! if detect { |e| e.is_a?(Set) } replace(flatten()) else nil end end # Returns true if the set contains the given object. def include?(o) @hash.include?(o) end alias member? include? # Returns true if the set is a superset of the given set. def superset?(set) set.is_a?(Set) or raise ArgumentError, "value must be a set" return false if size < set.size set.all? { |o| include?(o) } end # Returns true if the set is a proper superset of the given set. def proper_superset?(set) set.is_a?(Set) or raise ArgumentError, "value must be a set" return false if size <= set.size set.all? { |o| include?(o) } end # Returns true if the set is a subset of the given set. def subset?(set) set.is_a?(Set) or raise ArgumentError, "value must be a set" return false if set.size < size all? { |o| set.include?(o) } end # Returns true if the set is a proper subset of the given set. def proper_subset?(set) set.is_a?(Set) or raise ArgumentError, "value must be a set" return false if set.size <= size all? { |o| set.include?(o) } end # Calls the given block once for each element in the set, passing # the element as parameter. Returns an enumerator if no block is # given. def each block_given? or return enum_for(__method__) @hash.each_key { |o| yield(o) } self end # Adds the given object to the set and returns self. Use +merge+ to # add several elements at once. def add(o) @hash[o] = true self end alias << add # Adds the given object to the set and returns self. If the # object is already in the set, returns nil. def add?(o) if include?(o) nil else add(o) end end # Deletes the given object from the set and returns self. Use +subtract+ to # delete several items at once. def delete(o) @hash.delete(o) self end # Deletes the given object from the set and returns self. If the # object is not in the set, returns nil. def delete?(o) if include?(o) delete(o) else nil end end # Deletes every element of the set for which block evaluates to # true, and returns self. def delete_if to_a.each { |o| @hash.delete(o) if yield(o) } self end # Do collect() destructively. def collect! set = self.class.new each { |o| set << yield(o) } replace(set) end alias map! collect! # Equivalent to Set#delete_if, but returns nil if no changes were # made. def reject! n = size delete_if { |o| yield(o) } size == n ? nil : self end # Merges the elements of the given enumerable object to the set and # returns self. def merge(enum) if enum.is_a?(Set) @hash.update(enum.instance_eval { @hash }) else enum.is_a?(Enumerable) or raise ArgumentError, "value must be enumerable" enum.each { |o| add(o) } end self end # Deletes every element that appears in the given enumerable object # and returns self. def subtract(enum) enum.is_a?(Enumerable) or raise ArgumentError, "value must be enumerable" enum.each { |o| delete(o) } self end # Returns a new set built by merging the set and the elements of the # given enumerable object. def |(enum) enum.is_a?(Enumerable) or raise ArgumentError, "value must be enumerable" dup.merge(enum) end alias + | ## alias union | ## # Returns a new set built by duplicating the set, removing every # element that appears in the given enumerable object. def -(enum) enum.is_a?(Enumerable) or raise ArgumentError, "value must be enumerable" dup.subtract(enum) end alias difference - ## # Returns a new set containing elements common to the set and the # given enumerable object. def &(enum) enum.is_a?(Enumerable) or raise ArgumentError, "value must be enumerable" n = self.class.new enum.each { |o| n.add(o) if include?(o) } n end alias intersection & ## # Returns a new set containing elements exclusive between the set # and the given enumerable object. (set ^ enum) is equivalent to # ((set | enum) - (set & enum)). def ^(enum) enum.is_a?(Enumerable) or raise ArgumentError, "value must be enumerable" n = Set.new(enum) each { |o| if n.include?(o) then n.delete(o) else n.add(o) end } n end # Returns true if two sets are equal. The equality of each couple # of elements is defined according to Object#eql?. def ==(set) equal?(set) and return true set.is_a?(Set) && size == set.size or return false hash = @hash.dup set.all? { |o| hash.include?(o) } end def hash # :nodoc: @hash.hash end def eql?(o) # :nodoc: return false unless o.is_a?(Set) @hash.eql?(o.instance_eval{@hash}) end # Classifies the set by the return value of the given block and # returns a hash of {value => set of elements} pairs. The block is # called once for each element of the set, passing the element as # parameter. # # e.g.: # # require 'set' # files = Set.new(Dir.glob("*.rb")) # hash = files.classify { |f| File.mtime(f).year } # p hash # => {2000=>#<Set: {"a.rb", "b.rb"}>, # # 2001=>#<Set: {"c.rb", "d.rb", "e.rb"}>, # # 2002=>#<Set: {"f.rb"}>} def classify # :yields: o h = {} each { |i| x = yield(i) (h[x] ||= self.class.new).add(i) } h end # Divides the set into a set of subsets according to the commonality # defined by the given block. # # If the arity of the block is 2, elements o1 and o2 are in common # if block.call(o1, o2) is true. Otherwise, elements o1 and o2 are # in common if block.call(o1) == block.call(o2). # # e.g.: # # require 'set' # numbers = Set[1, 3, 4, 6, 9, 10, 11] # set = numbers.divide { |i,j| (i - j).abs == 1 } # p set # => #<Set: {#<Set: {1}>, # # #<Set: {11, 9, 10}>, # # #<Set: {3, 4}>, # # #<Set: {6}>}> def divide(&func) if func.arity == 2 require 'tsort' class << dig = {} # :nodoc: include TSort alias tsort_each_node each_key def tsort_each_child(node, &block) fetch(node).each(&block) end end each { |u| dig[u] = a = [] each{ |v| func.call(u, v) and a << v } } set = Set.new() dig.each_strongly_connected_component { |css| set.add(self.class.new(css)) } set else Set.new(classify(&func).values) end end InspectKey = :__inspect_key__ # :nodoc: # Returns a string containing a human-readable representation of the # set. ("#<Set: {element1, element2, ...}>") def inspect ids = (Thread.current[InspectKey] ||= []) if ids.include?(object_id) return sprintf('#<%s: {...}>', self.class.name) end begin ids << object_id return sprintf('#<%s: {%s}>', self.class, to_a.inspect[1..-2]) ensure ids.pop end end def pretty_print(pp) # :nodoc: pp.text sprintf('#<%s: {', self.class.name) pp.nest(1) { pp.seplist(self) { |o| pp.pp o } } pp.text "}>" end def pretty_print_cycle(pp) # :nodoc: pp.text sprintf('#<%s: {%s}>', self.class.name, empty? ? '' : '...') end end # SortedSet implements a set which elements are sorted in order. See Set. class SortedSet < Set @@setup = false class << self def [](*ary) # :nodoc: new(ary) end def setup # :nodoc: @@setup and return module_eval { # a hack to shut up warning alias old_init initialize remove_method :old_init } begin require 'rbtree' module_eval %{ def initialize(*args, &block) @hash = RBTree.new super end } rescue LoadError module_eval %{ def initialize(*args, &block) @keys = nil super end def clear @keys = nil super end def replace(enum) @keys = nil super end def add(o) @keys = nil @hash[o] = true self end alias << add def delete(o) @keys = nil @hash.delete(o) self end def delete_if n = @hash.size super @keys = nil if @hash.size != n self end def merge(enum) @keys = nil super end def each block_given? or return enum_for(__method__) to_a.each { |o| yield(o) } self end def to_a (@keys = @hash.keys).sort! unless @keys @keys end } end @@setup = true end end def initialize(*args, &block) # :nodoc: SortedSet.setup initialize(*args, &block) end end module Enumerable # Makes a set from the enumerable object with given arguments. # Needs to +require "set"+ to use this method. def to_set(klass = Set, *args, &block) klass.new(self, *args, &block) end end # =begin # == RestricedSet class # RestricedSet implements a set with restrictions defined by a given # block. # # === Super class # Set # # === Class Methods # --- RestricedSet::new(enum = nil) { |o| ... } # --- RestricedSet::new(enum = nil) { |rset, o| ... } # Creates a new restricted set containing the elements of the given # enumerable object. Restrictions are defined by the given block. # # If the block's arity is 2, it is called with the RestrictedSet # itself and an object to see if the object is allowed to be put in # the set. # # Otherwise, the block is called with an object to see if the object # is allowed to be put in the set. # # === Instance Methods # --- restriction_proc # Returns the restriction procedure of the set. # # =end # # class RestricedSet < Set # def initialize(*args, &block) # @proc = block or raise ArgumentError, "missing a block" # # if @proc.arity == 2 # instance_eval %{ # def add(o) # @hash[o] = true if @proc.call(self, o) # self # end # alias << add # # def add?(o) # if include?(o) || !@proc.call(self, o) # nil # else # @hash[o] = true # self # end # end # # def replace(enum) # enum.is_a?(Enumerable) or raise ArgumentError, "value must be enumerable" # clear # enum.each { |o| add(o) } # # self # end # # def merge(enum) # enum.is_a?(Enumerable) or raise ArgumentError, "value must be enumerable" # enum.each { |o| add(o) } # # self # end # } # else # instance_eval %{ # def add(o) # if @proc.call(o) # @hash[o] = true # end # self # end # alias << add # # def add?(o) # if include?(o) || !@proc.call(o) # nil # else # @hash[o] = true # self # end # end # } # end # # super(*args) # end # # def restriction_proc # @proc # end # end if $0 == __FILE__ eval DATA.read, nil, $0, __LINE__+4 end __END__ require 'test/unit' class TC_Set < Test::Unit::TestCase def test_aref assert_nothing_raised { Set[] Set[nil] Set[1,2,3] } assert_equal(0, Set[].size) assert_equal(1, Set[nil].size) assert_equal(1, Set[[]].size) assert_equal(1, Set[[nil]].size) set = Set[2,4,6,4] assert_equal(Set.new([2,4,6]), set) end def test_s_new assert_nothing_raised { Set.new() Set.new(nil) Set.new([]) Set.new([1,2]) Set.new('a'..'c') Set.new('XYZ') } assert_raises(ArgumentError) { Set.new(false) } assert_raises(ArgumentError) { Set.new(1) } assert_raises(ArgumentError) { Set.new(1,2) } assert_equal(0, Set.new().size) assert_equal(0, Set.new(nil).size) assert_equal(0, Set.new([]).size) assert_equal(1, Set.new([nil]).size) ary = [2,4,6,4] set = Set.new(ary) ary.clear assert_equal(false, set.empty?) assert_equal(3, set.size) ary = [1,2,3] s = Set.new(ary) { |o| o * 2 } assert_equal([2,4,6], s.sort) end def test_clone set1 = Set.new set2 = set1.clone set1 << 'abc' assert_equal(Set.new, set2) end def test_dup set1 = Set[1,2] set2 = set1.dup assert_not_same(set1, set2) assert_equal(set1, set2) set1.add(3) assert_not_equal(set1, set2) end def test_size assert_equal(0, Set[].size) assert_equal(2, Set[1,2].size) assert_equal(2, Set[1,2,1].size) end def test_empty? assert_equal(true, Set[].empty?) assert_equal(false, Set[1, 2].empty?) end def test_clear set = Set[1,2] ret = set.clear assert_same(set, ret) assert_equal(true, set.empty?) end def test_replace set = Set[1,2] ret = set.replace('a'..'c') assert_same(set, ret) assert_equal(Set['a','b','c'], set) end def test_to_a set = Set[1,2,3,2] ary = set.to_a assert_equal([1,2,3], ary.sort) end def test_flatten # test1 set1 = Set[ 1, Set[ 5, Set[7, Set[0] ], Set[6,2], 1 ], 3, Set[3,4] ] set2 = set1.flatten set3 = Set.new(0..7) assert_not_same(set2, set1) assert_equal(set3, set2) # test2; destructive orig_set1 = set1 set1.flatten! assert_same(orig_set1, set1) assert_equal(set3, set1) # test3; multiple occurrences of a set in an set set1 = Set[1, 2] set2 = Set[set1, Set[set1, 4], 3] assert_nothing_raised { set2.flatten! } assert_equal(Set.new(1..4), set2) # test4; recursion set2 = Set[] set1 = Set[1, set2] set2.add(set1) assert_raises(ArgumentError) { set1.flatten! } # test5; miscellaneous empty = Set[] set = Set[Set[empty, "a"],Set[empty, "b"]] assert_nothing_raised { set.flatten } set1 = empty.merge(Set["no_more", set]) assert_nil(Set.new(0..31).flatten!) x = Set[Set[],Set[1,2]].flatten! y = Set[1,2] assert_equal(x, y) end def test_include? set = Set[1,2,3] assert_equal(true, set.include?(1)) assert_equal(true, set.include?(2)) assert_equal(true, set.include?(3)) assert_equal(false, set.include?(0)) assert_equal(false, set.include?(nil)) set = Set["1",nil,"2",nil,"0","1",false] assert_equal(true, set.include?(nil)) assert_equal(true, set.include?(false)) assert_equal(true, set.include?("1")) assert_equal(false, set.include?(0)) assert_equal(false, set.include?(true)) end def test_superset? set = Set[1,2,3] assert_raises(ArgumentError) { set.superset?() } assert_raises(ArgumentError) { set.superset?(2) } assert_raises(ArgumentError) { set.superset?([2]) } assert_equal(true, set.superset?(Set[])) assert_equal(true, set.superset?(Set[1,2])) assert_equal(true, set.superset?(Set[1,2,3])) assert_equal(false, set.superset?(Set[1,2,3,4])) assert_equal(false, set.superset?(Set[1,4])) assert_equal(true, Set[].superset?(Set[])) end def test_proper_superset? set = Set[1,2,3] assert_raises(ArgumentError) { set.proper_superset?() } assert_raises(ArgumentError) { set.proper_superset?(2) } assert_raises(ArgumentError) { set.proper_superset?([2]) } assert_equal(true, set.proper_superset?(Set[])) assert_equal(true, set.proper_superset?(Set[1,2])) assert_equal(false, set.proper_superset?(Set[1,2,3])) assert_equal(false, set.proper_superset?(Set[1,2,3,4])) assert_equal(false, set.proper_superset?(Set[1,4])) assert_equal(false, Set[].proper_superset?(Set[])) end def test_subset? set = Set[1,2,3] assert_raises(ArgumentError) { set.subset?() } assert_raises(ArgumentError) { set.subset?(2) } assert_raises(ArgumentError) { set.subset?([2]) } assert_equal(true, set.subset?(Set[1,2,3,4])) assert_equal(true, set.subset?(Set[1,2,3])) assert_equal(false, set.subset?(Set[1,2])) assert_equal(false, set.subset?(Set[])) assert_equal(true, Set[].subset?(Set[1])) assert_equal(true, Set[].subset?(Set[])) end def test_proper_subset? set = Set[1,2,3] assert_raises(ArgumentError) { set.proper_subset?() } assert_raises(ArgumentError) { set.proper_subset?(2) } assert_raises(ArgumentError) { set.proper_subset?([2]) } assert_equal(true, set.proper_subset?(Set[1,2,3,4])) assert_equal(false, set.proper_subset?(Set[1,2,3])) assert_equal(false, set.proper_subset?(Set[1,2])) assert_equal(false, set.proper_subset?(Set[])) assert_equal(false, Set[].proper_subset?(Set[])) end def test_each ary = [1,3,5,7,10,20] set = Set.new(ary) ret = set.each { |o| } assert_same(set, ret) e = set.each assert_instance_of(Enumerable::Enumerator, e) assert_nothing_raised { set.each { |o| ary.delete(o) or raise "unexpected element: #{o}" } ary.empty? or raise "forgotten elements: #{ary.join(', ')}" } end def test_add set = Set[1,2,3] ret = set.add(2) assert_same(set, ret) assert_equal(Set[1,2,3], set) ret = set.add?(2) assert_nil(ret) assert_equal(Set[1,2,3], set) ret = set.add(4) assert_same(set, ret) assert_equal(Set[1,2,3,4], set) ret = set.add?(5) assert_same(set, ret) assert_equal(Set[1,2,3,4,5], set) end def test_delete set = Set[1,2,3] ret = set.delete(4) assert_same(set, ret) assert_equal(Set[1,2,3], set) ret = set.delete?(4) assert_nil(ret) assert_equal(Set[1,2,3], set) ret = set.delete(2) assert_equal(set, ret) assert_equal(Set[1,3], set) ret = set.delete?(1) assert_equal(set, ret) assert_equal(Set[3], set) end def test_delete_if set = Set.new(1..10) ret = set.delete_if { |i| i > 10 } assert_same(set, ret) assert_equal(Set.new(1..10), set) set = Set.new(1..10) ret = set.delete_if { |i| i % 3 == 0 } assert_same(set, ret) assert_equal(Set[1,2,4,5,7,8,10], set) end def test_collect! set = Set[1,2,3,'a','b','c',-1..1,2..4] ret = set.collect! { |i| case i when Numeric i * 2 when String i.upcase else nil end } assert_same(set, ret) assert_equal(Set[2,4,6,'A','B','C',nil], set) end def test_reject! set = Set.new(1..10) ret = set.reject! { |i| i > 10 } assert_nil(ret) assert_equal(Set.new(1..10), set) ret = set.reject! { |i| i % 3 == 0 } assert_same(set, ret) assert_equal(Set[1,2,4,5,7,8,10], set) end def test_merge set = Set[1,2,3] ret = set.merge([2,4,6]) assert_same(set, ret) assert_equal(Set[1,2,3,4,6], set) end def test_subtract set = Set[1,2,3] ret = set.subtract([2,4,6]) assert_same(set, ret) assert_equal(Set[1,3], set) end def test_plus set = Set[1,2,3] ret = set + [2,4,6] assert_not_same(set, ret) assert_equal(Set[1,2,3,4,6], ret) end def test_minus set = Set[1,2,3] ret = set - [2,4,6] assert_not_same(set, ret) assert_equal(Set[1,3], ret) end def test_and set = Set[1,2,3,4] ret = set & [2,4,6] assert_not_same(set, ret) assert_equal(Set[2,4], ret) end def test_xor set = Set[1,2,3,4] ret = set ^ [2,4,5,5] assert_not_same(set, ret) assert_equal(Set[1,3,5], ret) end def test_eq set1 = Set[2,3,1] set2 = Set[1,2,3] assert_equal(set1, set1) assert_equal(set1, set2) assert_not_equal(Set[1], [1]) set1 = Class.new(Set)["a", "b"] set2 = Set["a", "b", set1] set1 = set1.add(set1.clone) # assert_equal(set1, set2) # assert_equal(set2, set1) assert_equal(set2, set2.clone) assert_equal(set1.clone, set1) assert_not_equal(Set[Exception.new,nil], Set[Exception.new,Exception.new], "[ruby-dev:26127]") end # def test_hash # end # def test_eql? # end def test_classify set = Set.new(1..10) ret = set.classify { |i| i % 3 } assert_equal(3, ret.size) assert_instance_of(Hash, ret) ret.each_value { |value| assert_instance_of(Set, value) } assert_equal(Set[3,6,9], ret[0]) assert_equal(Set[1,4,7,10], ret[1]) assert_equal(Set[2,5,8], ret[2]) end def test_divide set = Set.new(1..10) ret = set.divide { |i| i % 3 } assert_equal(3, ret.size) n = 0 ret.each { |s| n += s.size } assert_equal(set.size, n) assert_equal(set, ret.flatten) set = Set[7,10,5,11,1,3,4,9,0] ret = set.divide { |a,b| (a - b).abs == 1 } assert_equal(4, ret.size) n = 0 ret.each { |s| n += s.size } assert_equal(set.size, n) assert_equal(set, ret.flatten) ret.each { |s| if s.include?(0) assert_equal(Set[0,1], s) elsif s.include?(3) assert_equal(Set[3,4,5], s) elsif s.include?(7) assert_equal(Set[7], s) elsif s.include?(9) assert_equal(Set[9,10,11], s) else raise "unexpected group: #{s.inspect}" end } end def test_inspect set1 = Set[1] assert_equal('#<Set: {1}>', set1.inspect) set2 = Set[Set[0], 1, 2, set1] assert_equal(false, set2.inspect.include?('#<Set: {...}>')) set1.add(set2) assert_equal(true, set1.inspect.include?('#<Set: {...}>')) end # def test_pretty_print # end # def test_pretty_print_cycle # end end class TC_SortedSet < Test::Unit::TestCase def test_sortedset s = SortedSet[4,5,3,1,2] assert_equal([1,2,3,4,5], s.to_a) prev = nil s.each { |o| assert(prev < o) if prev; prev = o } assert_not_nil(prev) s.map! { |o| -2 * o } assert_equal([-10,-8,-6,-4,-2], s.to_a) prev = nil ret = s.each { |o| assert(prev < o) if prev; prev = o } assert_not_nil(prev) assert_same(s, ret) s = SortedSet.new([2,1,3]) { |o| o * -2 } assert_equal([-6,-4,-2], s.to_a) s = SortedSet.new(['one', 'two', 'three', 'four']) a = [] ret = s.delete_if { |o| a << o; o.start_with?('t') } assert_same(s, ret) assert_equal(['four', 'one'], s.to_a) assert_equal(['four', 'one', 'three', 'two'], a) s = SortedSet.new(['one', 'two', 'three', 'four']) a = [] ret = s.reject! { |o| a << o; o.start_with?('t') } assert_same(s, ret) assert_equal(['four', 'one'], s.to_a) assert_equal(['four', 'one', 'three', 'two'], a) s = SortedSet.new(['one', 'two', 'three', 'four']) a = [] ret = s.reject! { |o| a << o; false } assert_same(nil, ret) assert_equal(['four', 'one', 'three', 'two'], s.to_a) assert_equal(['four', 'one', 'three', 'two'], a) end end class TC_Enumerable < Test::Unit::TestCase def test_to_set ary = [2,5,4,3,2,1,3] set = ary.to_set assert_instance_of(Set, set) assert_equal([1,2,3,4,5], set.sort) set = ary.to_set { |o| o * -2 } assert_instance_of(Set, set) assert_equal([-10,-8,-6,-4,-2], set.sort) set = ary.to_set(SortedSet) assert_instance_of(SortedSet, set) assert_equal([1,2,3,4,5], set.to_a) set = ary.to_set(SortedSet) { |o| o * -2 } assert_instance_of(SortedSet, set) assert_equal([-10,-8,-6,-4,-2], set.sort) end end # class TC_RestricedSet < Test::Unit::TestCase # def test_s_new # assert_raises(ArgumentError) { RestricedSet.new } # # s = RestricedSet.new([-1,2,3]) { |o| o > 0 } # assert_equal([2,3], s.sort) # end # # def test_restriction_proc # s = RestricedSet.new([-1,2,3]) { |o| o > 0 } # # f = s.restriction_proc # assert_instance_of(Proc, f) # assert(f[1]) # assert(!f[0]) # end # # def test_replace # s = RestricedSet.new(-3..3) { |o| o > 0 } # assert_equal([1,2,3], s.sort) # # s.replace([-2,0,3,4,5]) # assert_equal([3,4,5], s.sort) # end # # def test_merge # s = RestricedSet.new { |o| o > 0 } # s.merge(-5..5) # assert_equal([1,2,3,4,5], s.sort) # # s.merge([10,-10,-8,8]) # assert_equal([1,2,3,4,5,8,10], s.sort) # end # end