%PDF- %PDF-
Direktori : /proc/thread-self/root/proc/self/root/opt/alt/ruby33/share/ruby/ruby_vm/rjit/ |
Current File : //proc/thread-self/root/proc/self/root/opt/alt/ruby33/share/ruby/ruby_vm/rjit/compiler.rb |
require 'ruby_vm/rjit/assembler' require 'ruby_vm/rjit/block' require 'ruby_vm/rjit/branch_stub' require 'ruby_vm/rjit/code_block' require 'ruby_vm/rjit/context' require 'ruby_vm/rjit/entry_stub' require 'ruby_vm/rjit/exit_compiler' require 'ruby_vm/rjit/insn_compiler' require 'ruby_vm/rjit/instruction' require 'ruby_vm/rjit/invariants' require 'ruby_vm/rjit/jit_state' require 'ruby_vm/rjit/type' module RubyVM::RJIT # Compilation status KeepCompiling = :KeepCompiling CantCompile = :CantCompile EndBlock = :EndBlock # Ruby constants Qtrue = Fiddle::Qtrue Qfalse = Fiddle::Qfalse Qnil = Fiddle::Qnil Qundef = Fiddle::Qundef # Callee-saved registers # TODO: support using r12/r13 here EC = :r14 CFP = :r15 SP = :rbx # Scratch registers: rax, rcx, rdx # Mark objects in this Array during GC GC_REFS = [] # Maximum number of versions per block # 1 means always create generic versions MAX_VERSIONS = 4 class Compiler attr_accessor :write_pos def self.decode_insn(encoded) INSNS.fetch(C.rb_vm_insn_decode(encoded)) end def initialize mem_size = C.rjit_opts.exec_mem_size * 1024 * 1024 mem_block = C.mmap(mem_size) @cb = CodeBlock.new(mem_block: mem_block, mem_size: mem_size / 2) @ocb = CodeBlock.new(mem_block: mem_block + mem_size / 2, mem_size: mem_size / 2, outlined: true) @exit_compiler = ExitCompiler.new @insn_compiler = InsnCompiler.new(@cb, @ocb, @exit_compiler) Invariants.initialize(@cb, @ocb, self, @exit_compiler) end # Compile an ISEQ from its entry point. # @param iseq `RubyVM::RJIT::CPointer::Struct_rb_iseq_t` # @param cfp `RubyVM::RJIT::CPointer::Struct_rb_control_frame_t` def compile(iseq, cfp) return unless supported_platform? pc = cfp.pc.to_i jit = JITState.new(iseq:, cfp:) asm = Assembler.new compile_prologue(asm, iseq, pc) compile_block(asm, jit:, pc:) iseq.body.jit_entry = @cb.write(asm) rescue Exception => e STDERR.puts "#{e.class}: #{e.message}" STDERR.puts e.backtrace exit 1 end # Compile an entry. # @param entry [RubyVM::RJIT::EntryStub] def entry_stub_hit(entry_stub, cfp) # Compile a new entry guard as a next entry pc = cfp.pc.to_i next_entry = Assembler.new.then do |asm| compile_entry_chain_guard(asm, cfp.iseq, pc) @cb.write(asm) end # Try to find an existing compiled version of this block ctx = Context.new block = find_block(cfp.iseq, pc, ctx) if block # If an existing block is found, generate a jump to the block. asm = Assembler.new asm.jmp(block.start_addr) @cb.write(asm) else # If this block hasn't yet been compiled, generate blocks after the entry guard. asm = Assembler.new jit = JITState.new(iseq: cfp.iseq, cfp:) compile_block(asm, jit:, pc:, ctx:) @cb.write(asm) block = jit.block end # Regenerate the previous entry @cb.with_write_addr(entry_stub.start_addr) do # The last instruction of compile_entry_chain_guard is jne asm = Assembler.new asm.jne(next_entry) @cb.write(asm) end return block.start_addr rescue Exception => e STDERR.puts e.full_message exit 1 end # Compile a branch stub. # @param branch_stub [RubyVM::RJIT::BranchStub] # @param cfp `RubyVM::RJIT::CPointer::Struct_rb_control_frame_t` # @param target0_p [TrueClass,FalseClass] # @return [Integer] The starting address of the compiled branch stub def branch_stub_hit(branch_stub, cfp, target0_p) # Update cfp->pc for `jit.at_current_insn?` target = target0_p ? branch_stub.target0 : branch_stub.target1 cfp.pc = target.pc # Reuse an existing block if it already exists block = find_block(branch_stub.iseq, target.pc, target.ctx) # If the branch stub's jump is the last code, allow overwriting part of # the old branch code with the new block code. fallthrough = block.nil? && @cb.write_addr == branch_stub.end_addr if fallthrough # If the branch stub's jump is the last code, allow overwriting part of # the old branch code with the new block code. @cb.set_write_addr(branch_stub.start_addr) branch_stub.shape = target0_p ? Next0 : Next1 Assembler.new.tap do |branch_asm| branch_stub.compile.call(branch_asm) @cb.write(branch_asm) end end # Reuse or generate a block if block target.address = block.start_addr else jit = JITState.new(iseq: branch_stub.iseq, cfp:) target.address = Assembler.new.then do |asm| compile_block(asm, jit:, pc: target.pc, ctx: target.ctx.dup) @cb.write(asm) end block = jit.block end block.incoming << branch_stub # prepare for invalidate_block # Re-generate the branch code for non-fallthrough cases unless fallthrough @cb.with_write_addr(branch_stub.start_addr) do branch_asm = Assembler.new branch_stub.compile.call(branch_asm) @cb.write(branch_asm) end end return target.address rescue Exception => e STDERR.puts e.full_message exit 1 end # @param iseq `RubyVM::RJIT::CPointer::Struct_rb_iseq_t` # @param pc [Integer] def invalidate_blocks(iseq, pc) list_blocks(iseq, pc).each do |block| invalidate_block(block) end # If they were the ISEQ's first blocks, re-compile RJIT entry as well if iseq.body.iseq_encoded.to_i == pc iseq.body.jit_entry = 0 iseq.body.jit_entry_calls = 0 end end def invalidate_block(block) iseq = block.iseq # Avoid touching GCed ISEQs. We assume it won't be re-entered. return unless C.imemo_type_p(iseq, C.imemo_iseq) # Remove this block from the version array remove_block(iseq, block) # Invalidate the block with entry exit unless block.invalidated @cb.with_write_addr(block.start_addr) do asm = Assembler.new asm.comment('invalidate_block') asm.jmp(block.entry_exit) @cb.write(asm) end block.invalidated = true end # Re-stub incoming branches block.incoming.each do |branch_stub| target = [branch_stub.target0, branch_stub.target1].compact.find do |target| target.pc == block.pc && target.ctx == block.ctx end next if target.nil? # TODO: Could target.address be a stub address? Is invalidation not needed in that case? # If the target being re-generated is currently a fallthrough block, # the fallthrough code must be rewritten with a jump to the stub. if target.address == branch_stub.end_addr branch_stub.shape = Default end target.address = Assembler.new.then do |ocb_asm| @exit_compiler.compile_branch_stub(block.ctx, ocb_asm, branch_stub, target == branch_stub.target0) @ocb.write(ocb_asm) end @cb.with_write_addr(branch_stub.start_addr) do branch_asm = Assembler.new branch_stub.compile.call(branch_asm) @cb.write(branch_asm) end end end private # Callee-saved: rbx, rsp, rbp, r12, r13, r14, r15 # Caller-saved: rax, rdi, rsi, rdx, rcx, r8, r9, r10, r11 # # @param asm [RubyVM::RJIT::Assembler] def compile_prologue(asm, iseq, pc) asm.comment('RJIT entry point') # Save callee-saved registers used by JITed code asm.push(CFP) asm.push(EC) asm.push(SP) # Move arguments EC and CFP to dedicated registers asm.mov(EC, :rdi) asm.mov(CFP, :rsi) # Load sp to a dedicated register asm.mov(SP, [CFP, C.rb_control_frame_t.offsetof(:sp)]) # rbx = cfp->sp # Setup cfp->jit_return asm.mov(:rax, leave_exit) asm.mov([CFP, C.rb_control_frame_t.offsetof(:jit_return)], :rax) # We're compiling iseqs that we *expect* to start at `insn_idx`. But in # the case of optional parameters, the interpreter can set the pc to a # different location depending on the optional parameters. If an iseq # has optional parameters, we'll add a runtime check that the PC we've # compiled for is the same PC that the interpreter wants us to run with. # If they don't match, then we'll take a side exit. if iseq.body.param.flags.has_opt compile_entry_chain_guard(asm, iseq, pc) end end def compile_entry_chain_guard(asm, iseq, pc) entry_stub = EntryStub.new stub_addr = Assembler.new.then do |ocb_asm| @exit_compiler.compile_entry_stub(ocb_asm, entry_stub) @ocb.write(ocb_asm) end asm.comment('guard expected PC') asm.mov(:rax, pc) asm.cmp([CFP, C.rb_control_frame_t.offsetof(:pc)], :rax) asm.stub(entry_stub) do asm.jne(stub_addr) end end # @param asm [RubyVM::RJIT::Assembler] # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] def compile_block(asm, jit:, pc:, ctx: Context.new) # Mark the block start address and prepare an exit code storage ctx = limit_block_versions(jit.iseq, pc, ctx) block = Block.new(iseq: jit.iseq, pc:, ctx: ctx.dup) jit.block = block asm.block(block) iseq = jit.iseq asm.comment("Block: #{iseq.body.location.label}@#{C.rb_iseq_path(iseq)}:#{iseq_lineno(iseq, pc)}") # Compile each insn index = (pc - iseq.body.iseq_encoded.to_i) / C.VALUE.size while index < iseq.body.iseq_size # Set the current instruction insn = self.class.decode_insn(iseq.body.iseq_encoded[index]) jit.pc = (iseq.body.iseq_encoded + index).to_i jit.stack_size_for_pc = ctx.stack_size jit.side_exit_for_pc.clear # If previous instruction requested to record the boundary if jit.record_boundary_patch_point # Generate an exit to this instruction and record it exit_pos = Assembler.new.then do |ocb_asm| @exit_compiler.compile_side_exit(jit.pc, ctx, ocb_asm) @ocb.write(ocb_asm) end Invariants.record_global_inval_patch(asm, exit_pos) jit.record_boundary_patch_point = false end # In debug mode, verify our existing assumption if C.rjit_opts.verify_ctx && jit.at_current_insn? verify_ctx(jit, ctx) end case status = @insn_compiler.compile(jit, ctx, asm, insn) when KeepCompiling # For now, reset the chain depth after each instruction as only the # first instruction in the block can concern itself with the depth. ctx.chain_depth = 0 index += insn.len when EndBlock # TODO: pad nops if entry exit exists (not needed for x86_64?) break when CantCompile # Rewind stack_size using ctx.with_stack_size to allow stack_size changes # before you return CantCompile. @exit_compiler.compile_side_exit(jit.pc, ctx.with_stack_size(jit.stack_size_for_pc), asm) # If this is the first instruction, this block never needs to be invalidated. if block.pc == iseq.body.iseq_encoded.to_i + index * C.VALUE.size block.invalidated = true end break else raise "compiling #{insn.name} returned unexpected status: #{status.inspect}" end end incr_counter(:compiled_block_count) add_block(iseq, block) end def leave_exit @leave_exit ||= Assembler.new.then do |asm| @exit_compiler.compile_leave_exit(asm) @ocb.write(asm) end end def incr_counter(name) if C.rjit_opts.stats C.rb_rjit_counters[name][0] += 1 end end # Produce a generic context when the block version limit is hit for the block def limit_block_versions(iseq, pc, ctx) # Guard chains implement limits separately, do nothing if ctx.chain_depth > 0 return ctx.dup end # If this block version we're about to add will hit the version limit if list_blocks(iseq, pc).size + 1 >= MAX_VERSIONS # Produce a generic context that stores no type information, # but still respects the stack_size and sp_offset constraints. # This new context will then match all future requests. generic_ctx = Context.new generic_ctx.stack_size = ctx.stack_size generic_ctx.sp_offset = ctx.sp_offset if ctx.diff(generic_ctx) == TypeDiff::Incompatible raise 'should substitute a compatible context' end return generic_ctx end return ctx.dup end def list_blocks(iseq, pc) rjit_blocks(iseq)[pc] end # @param [Integer] pc # @param [RubyVM::RJIT::Context] ctx # @return [RubyVM::RJIT::Block,NilClass] def find_block(iseq, pc, ctx) versions = rjit_blocks(iseq)[pc] best_version = nil best_diff = Float::INFINITY versions.each do |block| # Note that we always prefer the first matching # version found because of inline-cache chains case ctx.diff(block.ctx) in TypeDiff::Compatible[diff] if diff < best_diff best_version = block best_diff = diff else end end return best_version end # @param [RubyVM::RJIT::Block] block def add_block(iseq, block) rjit_blocks(iseq)[block.pc] << block end # @param [RubyVM::RJIT::Block] block def remove_block(iseq, block) rjit_blocks(iseq)[block.pc].delete(block) end def rjit_blocks(iseq) # Guard against ISEQ GC at random moments unless C.imemo_type_p(iseq, C.imemo_iseq) return Hash.new { |h, k| h[k] = [] } end unless iseq.body.rjit_blocks iseq.body.rjit_blocks = Hash.new { |blocks, pc| blocks[pc] = [] } # For some reason, rb_rjit_iseq_mark didn't protect this Hash # from being freed. So we rely on GC_REFS to keep the Hash. GC_REFS << iseq.body.rjit_blocks end iseq.body.rjit_blocks end def iseq_lineno(iseq, pc) C.rb_iseq_line_no(iseq, (pc - iseq.body.iseq_encoded.to_i) / C.VALUE.size) rescue RangeError # bignum too big to convert into `unsigned long long' (RangeError) -1 end # Verify the ctx's types and mappings against the compile-time stack, self, and locals. # @param jit [RubyVM::RJIT::JITState] # @param ctx [RubyVM::RJIT::Context] def verify_ctx(jit, ctx) # Only able to check types when at current insn assert(jit.at_current_insn?) self_val = jit.peek_at_self self_val_type = Type.from(self_val) # Verify self operand type assert_compatible(self_val_type, ctx.get_opnd_type(SelfOpnd)) # Verify stack operand types [ctx.stack_size, MAX_TEMP_TYPES].min.times do |i| learned_mapping, learned_type = ctx.get_opnd_mapping(StackOpnd[i]) stack_val = jit.peek_at_stack(i) val_type = Type.from(stack_val) case learned_mapping in MapToSelf if C.to_value(self_val) != C.to_value(stack_val) raise "verify_ctx: stack value was mapped to self, but values did not match:\n"\ "stack: #{stack_val.inspect}, self: #{self_val.inspect}" end in MapToLocal[local_idx] local_val = jit.peek_at_local(local_idx) if C.to_value(local_val) != C.to_value(stack_val) raise "verify_ctx: stack value was mapped to local, but values did not match:\n"\ "stack: #{stack_val.inspect}, local: #{local_val.inspect}" end in MapToStack # noop end # If the actual type differs from the learned type assert_compatible(val_type, learned_type) end # Verify local variable types local_table_size = jit.iseq.body.local_table_size [local_table_size, MAX_TEMP_TYPES].min.times do |i| learned_type = ctx.get_local_type(i) local_val = jit.peek_at_local(i) local_type = Type.from(local_val) assert_compatible(local_type, learned_type) end end def assert_compatible(actual_type, ctx_type) if actual_type.diff(ctx_type) == TypeDiff::Incompatible raise "verify_ctx: ctx type (#{ctx_type.type.inspect}) is incompatible with actual type (#{actual_type.type.inspect})" end end def assert(cond) unless cond raise "'#{cond.inspect}' was not true" end end def supported_platform? return @supported_platform if defined?(@supported_platform) @supported_platform = RUBY_PLATFORM.match?(/x86_64/).tap do |supported| warn "warning: RJIT does not support #{RUBY_PLATFORM} yet" unless supported end end end end