%PDF- %PDF-
Direktori : /proc/thread-self/root/proc/self/root/home/medipszd/www/bower_components/jvectormap/src/ |
Current File : //proc/thread-self/root/proc/self/root/home/medipszd/www/bower_components/jvectormap/src/proj.js |
/** * Contains methods for transforming point on sphere to * Cartesian coordinates using various projections. * @class */ jvm.Proj = { degRad: 180 / Math.PI, radDeg: Math.PI / 180, radius: 6381372, sgn: function(n){ if (n > 0) { return 1; } else if (n < 0) { return -1; } else { return n; } }, /** * Converts point on sphere to the Cartesian coordinates using Miller projection * @param {Number} lat Latitude in degrees * @param {Number} lng Longitude in degrees * @param {Number} c Central meridian in degrees */ mill: function(lat, lng, c){ return { x: this.radius * (lng - c) * this.radDeg, y: - this.radius * Math.log(Math.tan((45 + 0.4 * lat) * this.radDeg)) / 0.8 }; }, /** * Inverse function of mill() * Converts Cartesian coordinates to point on sphere using Miller projection * @param {Number} x X of point in Cartesian system as integer * @param {Number} y Y of point in Cartesian system as integer * @param {Number} c Central meridian in degrees */ mill_inv: function(x, y, c){ return { lat: (2.5 * Math.atan(Math.exp(0.8 * y / this.radius)) - 5 * Math.PI / 8) * this.degRad, lng: (c * this.radDeg + x / this.radius) * this.degRad }; }, /** * Converts point on sphere to the Cartesian coordinates using Mercator projection * @param {Number} lat Latitude in degrees * @param {Number} lng Longitude in degrees * @param {Number} c Central meridian in degrees */ merc: function(lat, lng, c){ return { x: this.radius * (lng - c) * this.radDeg, y: - this.radius * Math.log(Math.tan(Math.PI / 4 + lat * Math.PI / 360)) }; }, /** * Inverse function of merc() * Converts Cartesian coordinates to point on sphere using Mercator projection * @param {Number} x X of point in Cartesian system as integer * @param {Number} y Y of point in Cartesian system as integer * @param {Number} c Central meridian in degrees */ merc_inv: function(x, y, c){ return { lat: (2 * Math.atan(Math.exp(y / this.radius)) - Math.PI / 2) * this.degRad, lng: (c * this.radDeg + x / this.radius) * this.degRad }; }, /** * Converts point on sphere to the Cartesian coordinates using Albers Equal-Area Conic * projection * @see <a href="http://mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html">Albers Equal-Area Conic projection</a> * @param {Number} lat Latitude in degrees * @param {Number} lng Longitude in degrees * @param {Number} c Central meridian in degrees */ aea: function(lat, lng, c){ var fi0 = 0, lambda0 = c * this.radDeg, fi1 = 29.5 * this.radDeg, fi2 = 45.5 * this.radDeg, fi = lat * this.radDeg, lambda = lng * this.radDeg, n = (Math.sin(fi1)+Math.sin(fi2)) / 2, C = Math.cos(fi1)*Math.cos(fi1)+2*n*Math.sin(fi1), theta = n*(lambda-lambda0), ro = Math.sqrt(C-2*n*Math.sin(fi))/n, ro0 = Math.sqrt(C-2*n*Math.sin(fi0))/n; return { x: ro * Math.sin(theta) * this.radius, y: - (ro0 - ro * Math.cos(theta)) * this.radius }; }, /** * Converts Cartesian coordinates to the point on sphere using Albers Equal-Area Conic * projection * @see <a href="http://mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html">Albers Equal-Area Conic projection</a> * @param {Number} x X of point in Cartesian system as integer * @param {Number} y Y of point in Cartesian system as integer * @param {Number} c Central meridian in degrees */ aea_inv: function(xCoord, yCoord, c){ var x = xCoord / this.radius, y = yCoord / this.radius, fi0 = 0, lambda0 = c * this.radDeg, fi1 = 29.5 * this.radDeg, fi2 = 45.5 * this.radDeg, n = (Math.sin(fi1)+Math.sin(fi2)) / 2, C = Math.cos(fi1)*Math.cos(fi1)+2*n*Math.sin(fi1), ro0 = Math.sqrt(C-2*n*Math.sin(fi0))/n, ro = Math.sqrt(x*x+(ro0-y)*(ro0-y)), theta = Math.atan( x / (ro0 - y) ); return { lat: (Math.asin((C - ro * ro * n * n) / (2 * n))) * this.degRad, lng: (lambda0 + theta / n) * this.degRad }; }, /** * Converts point on sphere to the Cartesian coordinates using Lambert conformal * conic projection * @see <a href="http://mathworld.wolfram.com/LambertConformalConicProjection.html">Lambert Conformal Conic Projection</a> * @param {Number} lat Latitude in degrees * @param {Number} lng Longitude in degrees * @param {Number} c Central meridian in degrees */ lcc: function(lat, lng, c){ var fi0 = 0, lambda0 = c * this.radDeg, lambda = lng * this.radDeg, fi1 = 33 * this.radDeg, fi2 = 45 * this.radDeg, fi = lat * this.radDeg, n = Math.log( Math.cos(fi1) * (1 / Math.cos(fi2)) ) / Math.log( Math.tan( Math.PI / 4 + fi2 / 2) * (1 / Math.tan( Math.PI / 4 + fi1 / 2) ) ), F = ( Math.cos(fi1) * Math.pow( Math.tan( Math.PI / 4 + fi1 / 2 ), n ) ) / n, ro = F * Math.pow( 1 / Math.tan( Math.PI / 4 + fi / 2 ), n ), ro0 = F * Math.pow( 1 / Math.tan( Math.PI / 4 + fi0 / 2 ), n ); return { x: ro * Math.sin( n * (lambda - lambda0) ) * this.radius, y: - (ro0 - ro * Math.cos( n * (lambda - lambda0) ) ) * this.radius }; }, /** * Converts Cartesian coordinates to the point on sphere using Lambert conformal conic * projection * @see <a href="http://mathworld.wolfram.com/LambertConformalConicProjection.html">Lambert Conformal Conic Projection</a> * @param {Number} x X of point in Cartesian system as integer * @param {Number} y Y of point in Cartesian system as integer * @param {Number} c Central meridian in degrees */ lcc_inv: function(xCoord, yCoord, c){ var x = xCoord / this.radius, y = yCoord / this.radius, fi0 = 0, lambda0 = c * this.radDeg, fi1 = 33 * this.radDeg, fi2 = 45 * this.radDeg, n = Math.log( Math.cos(fi1) * (1 / Math.cos(fi2)) ) / Math.log( Math.tan( Math.PI / 4 + fi2 / 2) * (1 / Math.tan( Math.PI / 4 + fi1 / 2) ) ), F = ( Math.cos(fi1) * Math.pow( Math.tan( Math.PI / 4 + fi1 / 2 ), n ) ) / n, ro0 = F * Math.pow( 1 / Math.tan( Math.PI / 4 + fi0 / 2 ), n ), ro = this.sgn(n) * Math.sqrt(x*x+(ro0-y)*(ro0-y)), theta = Math.atan( x / (ro0 - y) ); return { lat: (2 * Math.atan(Math.pow(F/ro, 1/n)) - Math.PI / 2) * this.degRad, lng: (lambda0 + theta / n) * this.degRad }; } };