%PDF- %PDF-
Direktori : /proc/thread-self/root/opt/cloudlinux/venv/lib64/python3.11/site-packages/pydantic/v1/ |
Current File : //proc/thread-self/root/opt/cloudlinux/venv/lib64/python3.11/site-packages/pydantic/v1/utils.py |
import keyword import warnings import weakref from collections import OrderedDict, defaultdict, deque from copy import deepcopy from itertools import islice, zip_longest from types import BuiltinFunctionType, CodeType, FunctionType, GeneratorType, LambdaType, ModuleType from typing import ( TYPE_CHECKING, AbstractSet, Any, Callable, Collection, Dict, Generator, Iterable, Iterator, List, Mapping, NoReturn, Optional, Set, Tuple, Type, TypeVar, Union, ) from typing_extensions import Annotated from .errors import ConfigError from .typing import ( NoneType, WithArgsTypes, all_literal_values, display_as_type, get_args, get_origin, is_literal_type, is_union, ) from .version import version_info if TYPE_CHECKING: from inspect import Signature from pathlib import Path from .config import BaseConfig from .dataclasses import Dataclass from .fields import ModelField from .main import BaseModel from .typing import AbstractSetIntStr, DictIntStrAny, IntStr, MappingIntStrAny, ReprArgs RichReprResult = Iterable[Union[Any, Tuple[Any], Tuple[str, Any], Tuple[str, Any, Any]]] __all__ = ( 'import_string', 'sequence_like', 'validate_field_name', 'lenient_isinstance', 'lenient_issubclass', 'in_ipython', 'is_valid_identifier', 'deep_update', 'update_not_none', 'almost_equal_floats', 'get_model', 'to_camel', 'is_valid_field', 'smart_deepcopy', 'PyObjectStr', 'Representation', 'GetterDict', 'ValueItems', 'version_info', # required here to match behaviour in v1.3 'ClassAttribute', 'path_type', 'ROOT_KEY', 'get_unique_discriminator_alias', 'get_discriminator_alias_and_values', 'DUNDER_ATTRIBUTES', ) ROOT_KEY = '__root__' # these are types that are returned unchanged by deepcopy IMMUTABLE_NON_COLLECTIONS_TYPES: Set[Type[Any]] = { int, float, complex, str, bool, bytes, type, NoneType, FunctionType, BuiltinFunctionType, LambdaType, weakref.ref, CodeType, # note: including ModuleType will differ from behaviour of deepcopy by not producing error. # It might be not a good idea in general, but considering that this function used only internally # against default values of fields, this will allow to actually have a field with module as default value ModuleType, NotImplemented.__class__, Ellipsis.__class__, } # these are types that if empty, might be copied with simple copy() instead of deepcopy() BUILTIN_COLLECTIONS: Set[Type[Any]] = { list, set, tuple, frozenset, dict, OrderedDict, defaultdict, deque, } def import_string(dotted_path: str) -> Any: """ Stolen approximately from django. Import a dotted module path and return the attribute/class designated by the last name in the path. Raise ImportError if the import fails. """ from importlib import import_module try: module_path, class_name = dotted_path.strip(' ').rsplit('.', 1) except ValueError as e: raise ImportError(f'"{dotted_path}" doesn\'t look like a module path') from e module = import_module(module_path) try: return getattr(module, class_name) except AttributeError as e: raise ImportError(f'Module "{module_path}" does not define a "{class_name}" attribute') from e def truncate(v: Union[str], *, max_len: int = 80) -> str: """ Truncate a value and add a unicode ellipsis (three dots) to the end if it was too long """ warnings.warn('`truncate` is no-longer used by pydantic and is deprecated', DeprecationWarning) if isinstance(v, str) and len(v) > (max_len - 2): # -3 so quote + string + … + quote has correct length return (v[: (max_len - 3)] + '…').__repr__() try: v = v.__repr__() except TypeError: v = v.__class__.__repr__(v) # in case v is a type if len(v) > max_len: v = v[: max_len - 1] + '…' return v def sequence_like(v: Any) -> bool: return isinstance(v, (list, tuple, set, frozenset, GeneratorType, deque)) def validate_field_name(bases: List[Type['BaseModel']], field_name: str) -> None: """ Ensure that the field's name does not shadow an existing attribute of the model. """ for base in bases: if getattr(base, field_name, None): raise NameError( f'Field name "{field_name}" shadows a BaseModel attribute; ' f'use a different field name with "alias=\'{field_name}\'".' ) def lenient_isinstance(o: Any, class_or_tuple: Union[Type[Any], Tuple[Type[Any], ...], None]) -> bool: try: return isinstance(o, class_or_tuple) # type: ignore[arg-type] except TypeError: return False def lenient_issubclass(cls: Any, class_or_tuple: Union[Type[Any], Tuple[Type[Any], ...], None]) -> bool: try: return isinstance(cls, type) and issubclass(cls, class_or_tuple) # type: ignore[arg-type] except TypeError: if isinstance(cls, WithArgsTypes): return False raise # pragma: no cover def in_ipython() -> bool: """ Check whether we're in an ipython environment, including jupyter notebooks. """ try: eval('__IPYTHON__') except NameError: return False else: # pragma: no cover return True def is_valid_identifier(identifier: str) -> bool: """ Checks that a string is a valid identifier and not a Python keyword. :param identifier: The identifier to test. :return: True if the identifier is valid. """ return identifier.isidentifier() and not keyword.iskeyword(identifier) KeyType = TypeVar('KeyType') def deep_update(mapping: Dict[KeyType, Any], *updating_mappings: Dict[KeyType, Any]) -> Dict[KeyType, Any]: updated_mapping = mapping.copy() for updating_mapping in updating_mappings: for k, v in updating_mapping.items(): if k in updated_mapping and isinstance(updated_mapping[k], dict) and isinstance(v, dict): updated_mapping[k] = deep_update(updated_mapping[k], v) else: updated_mapping[k] = v return updated_mapping def update_not_none(mapping: Dict[Any, Any], **update: Any) -> None: mapping.update({k: v for k, v in update.items() if v is not None}) def almost_equal_floats(value_1: float, value_2: float, *, delta: float = 1e-8) -> bool: """ Return True if two floats are almost equal """ return abs(value_1 - value_2) <= delta def generate_model_signature( init: Callable[..., None], fields: Dict[str, 'ModelField'], config: Type['BaseConfig'] ) -> 'Signature': """ Generate signature for model based on its fields """ from inspect import Parameter, Signature, signature from .config import Extra present_params = signature(init).parameters.values() merged_params: Dict[str, Parameter] = {} var_kw = None use_var_kw = False for param in islice(present_params, 1, None): # skip self arg if param.kind is param.VAR_KEYWORD: var_kw = param continue merged_params[param.name] = param if var_kw: # if custom init has no var_kw, fields which are not declared in it cannot be passed through allow_names = config.allow_population_by_field_name for field_name, field in fields.items(): param_name = field.alias if field_name in merged_params or param_name in merged_params: continue elif not is_valid_identifier(param_name): if allow_names and is_valid_identifier(field_name): param_name = field_name else: use_var_kw = True continue # TODO: replace annotation with actual expected types once #1055 solved kwargs = {'default': field.default} if not field.required else {} merged_params[param_name] = Parameter( param_name, Parameter.KEYWORD_ONLY, annotation=field.annotation, **kwargs ) if config.extra is Extra.allow: use_var_kw = True if var_kw and use_var_kw: # Make sure the parameter for extra kwargs # does not have the same name as a field default_model_signature = [ ('__pydantic_self__', Parameter.POSITIONAL_OR_KEYWORD), ('data', Parameter.VAR_KEYWORD), ] if [(p.name, p.kind) for p in present_params] == default_model_signature: # if this is the standard model signature, use extra_data as the extra args name var_kw_name = 'extra_data' else: # else start from var_kw var_kw_name = var_kw.name # generate a name that's definitely unique while var_kw_name in fields: var_kw_name += '_' merged_params[var_kw_name] = var_kw.replace(name=var_kw_name) return Signature(parameters=list(merged_params.values()), return_annotation=None) def get_model(obj: Union[Type['BaseModel'], Type['Dataclass']]) -> Type['BaseModel']: from .main import BaseModel try: model_cls = obj.__pydantic_model__ # type: ignore except AttributeError: model_cls = obj if not issubclass(model_cls, BaseModel): raise TypeError('Unsupported type, must be either BaseModel or dataclass') return model_cls def to_camel(string: str) -> str: return ''.join(word.capitalize() for word in string.split('_')) def to_lower_camel(string: str) -> str: if len(string) >= 1: pascal_string = to_camel(string) return pascal_string[0].lower() + pascal_string[1:] return string.lower() T = TypeVar('T') def unique_list( input_list: Union[List[T], Tuple[T, ...]], *, name_factory: Callable[[T], str] = str, ) -> List[T]: """ Make a list unique while maintaining order. We update the list if another one with the same name is set (e.g. root validator overridden in subclass) """ result: List[T] = [] result_names: List[str] = [] for v in input_list: v_name = name_factory(v) if v_name not in result_names: result_names.append(v_name) result.append(v) else: result[result_names.index(v_name)] = v return result class PyObjectStr(str): """ String class where repr doesn't include quotes. Useful with Representation when you want to return a string representation of something that valid (or pseudo-valid) python. """ def __repr__(self) -> str: return str(self) class Representation: """ Mixin to provide __str__, __repr__, and __pretty__ methods. See #884 for more details. __pretty__ is used by [devtools](https://python-devtools.helpmanual.io/) to provide human readable representations of objects. """ __slots__: Tuple[str, ...] = tuple() def __repr_args__(self) -> 'ReprArgs': """ Returns the attributes to show in __str__, __repr__, and __pretty__ this is generally overridden. Can either return: * name - value pairs, e.g.: `[('foo_name', 'foo'), ('bar_name', ['b', 'a', 'r'])]` * or, just values, e.g.: `[(None, 'foo'), (None, ['b', 'a', 'r'])]` """ attrs = ((s, getattr(self, s)) for s in self.__slots__) return [(a, v) for a, v in attrs if v is not None] def __repr_name__(self) -> str: """ Name of the instance's class, used in __repr__. """ return self.__class__.__name__ def __repr_str__(self, join_str: str) -> str: return join_str.join(repr(v) if a is None else f'{a}={v!r}' for a, v in self.__repr_args__()) def __pretty__(self, fmt: Callable[[Any], Any], **kwargs: Any) -> Generator[Any, None, None]: """ Used by devtools (https://python-devtools.helpmanual.io/) to provide a human readable representations of objects """ yield self.__repr_name__() + '(' yield 1 for name, value in self.__repr_args__(): if name is not None: yield name + '=' yield fmt(value) yield ',' yield 0 yield -1 yield ')' def __str__(self) -> str: return self.__repr_str__(' ') def __repr__(self) -> str: return f'{self.__repr_name__()}({self.__repr_str__(", ")})' def __rich_repr__(self) -> 'RichReprResult': """Get fields for Rich library""" for name, field_repr in self.__repr_args__(): if name is None: yield field_repr else: yield name, field_repr class GetterDict(Representation): """ Hack to make object's smell just enough like dicts for validate_model. We can't inherit from Mapping[str, Any] because it upsets cython so we have to implement all methods ourselves. """ __slots__ = ('_obj',) def __init__(self, obj: Any): self._obj = obj def __getitem__(self, key: str) -> Any: try: return getattr(self._obj, key) except AttributeError as e: raise KeyError(key) from e def get(self, key: Any, default: Any = None) -> Any: return getattr(self._obj, key, default) def extra_keys(self) -> Set[Any]: """ We don't want to get any other attributes of obj if the model didn't explicitly ask for them """ return set() def keys(self) -> List[Any]: """ Keys of the pseudo dictionary, uses a list not set so order information can be maintained like python dictionaries. """ return list(self) def values(self) -> List[Any]: return [self[k] for k in self] def items(self) -> Iterator[Tuple[str, Any]]: for k in self: yield k, self.get(k) def __iter__(self) -> Iterator[str]: for name in dir(self._obj): if not name.startswith('_'): yield name def __len__(self) -> int: return sum(1 for _ in self) def __contains__(self, item: Any) -> bool: return item in self.keys() def __eq__(self, other: Any) -> bool: return dict(self) == dict(other.items()) def __repr_args__(self) -> 'ReprArgs': return [(None, dict(self))] def __repr_name__(self) -> str: return f'GetterDict[{display_as_type(self._obj)}]' class ValueItems(Representation): """ Class for more convenient calculation of excluded or included fields on values. """ __slots__ = ('_items', '_type') def __init__(self, value: Any, items: Union['AbstractSetIntStr', 'MappingIntStrAny']) -> None: items = self._coerce_items(items) if isinstance(value, (list, tuple)): items = self._normalize_indexes(items, len(value)) self._items: 'MappingIntStrAny' = items def is_excluded(self, item: Any) -> bool: """ Check if item is fully excluded. :param item: key or index of a value """ return self.is_true(self._items.get(item)) def is_included(self, item: Any) -> bool: """ Check if value is contained in self._items :param item: key or index of value """ return item in self._items def for_element(self, e: 'IntStr') -> Optional[Union['AbstractSetIntStr', 'MappingIntStrAny']]: """ :param e: key or index of element on value :return: raw values for element if self._items is dict and contain needed element """ item = self._items.get(e) return item if not self.is_true(item) else None def _normalize_indexes(self, items: 'MappingIntStrAny', v_length: int) -> 'DictIntStrAny': """ :param items: dict or set of indexes which will be normalized :param v_length: length of sequence indexes of which will be >>> self._normalize_indexes({0: True, -2: True, -1: True}, 4) {0: True, 2: True, 3: True} >>> self._normalize_indexes({'__all__': True}, 4) {0: True, 1: True, 2: True, 3: True} """ normalized_items: 'DictIntStrAny' = {} all_items = None for i, v in items.items(): if not (isinstance(v, Mapping) or isinstance(v, AbstractSet) or self.is_true(v)): raise TypeError(f'Unexpected type of exclude value for index "{i}" {v.__class__}') if i == '__all__': all_items = self._coerce_value(v) continue if not isinstance(i, int): raise TypeError( 'Excluding fields from a sequence of sub-models or dicts must be performed index-wise: ' 'expected integer keys or keyword "__all__"' ) normalized_i = v_length + i if i < 0 else i normalized_items[normalized_i] = self.merge(v, normalized_items.get(normalized_i)) if not all_items: return normalized_items if self.is_true(all_items): for i in range(v_length): normalized_items.setdefault(i, ...) return normalized_items for i in range(v_length): normalized_item = normalized_items.setdefault(i, {}) if not self.is_true(normalized_item): normalized_items[i] = self.merge(all_items, normalized_item) return normalized_items @classmethod def merge(cls, base: Any, override: Any, intersect: bool = False) -> Any: """ Merge a ``base`` item with an ``override`` item. Both ``base`` and ``override`` are converted to dictionaries if possible. Sets are converted to dictionaries with the sets entries as keys and Ellipsis as values. Each key-value pair existing in ``base`` is merged with ``override``, while the rest of the key-value pairs are updated recursively with this function. Merging takes place based on the "union" of keys if ``intersect`` is set to ``False`` (default) and on the intersection of keys if ``intersect`` is set to ``True``. """ override = cls._coerce_value(override) base = cls._coerce_value(base) if override is None: return base if cls.is_true(base) or base is None: return override if cls.is_true(override): return base if intersect else override # intersection or union of keys while preserving ordering: if intersect: merge_keys = [k for k in base if k in override] + [k for k in override if k in base] else: merge_keys = list(base) + [k for k in override if k not in base] merged: 'DictIntStrAny' = {} for k in merge_keys: merged_item = cls.merge(base.get(k), override.get(k), intersect=intersect) if merged_item is not None: merged[k] = merged_item return merged @staticmethod def _coerce_items(items: Union['AbstractSetIntStr', 'MappingIntStrAny']) -> 'MappingIntStrAny': if isinstance(items, Mapping): pass elif isinstance(items, AbstractSet): items = dict.fromkeys(items, ...) else: class_name = getattr(items, '__class__', '???') assert_never( items, f'Unexpected type of exclude value {class_name}', ) return items @classmethod def _coerce_value(cls, value: Any) -> Any: if value is None or cls.is_true(value): return value return cls._coerce_items(value) @staticmethod def is_true(v: Any) -> bool: return v is True or v is ... def __repr_args__(self) -> 'ReprArgs': return [(None, self._items)] class ClassAttribute: """ Hide class attribute from its instances """ __slots__ = ( 'name', 'value', ) def __init__(self, name: str, value: Any) -> None: self.name = name self.value = value def __get__(self, instance: Any, owner: Type[Any]) -> None: if instance is None: return self.value raise AttributeError(f'{self.name!r} attribute of {owner.__name__!r} is class-only') path_types = { 'is_dir': 'directory', 'is_file': 'file', 'is_mount': 'mount point', 'is_symlink': 'symlink', 'is_block_device': 'block device', 'is_char_device': 'char device', 'is_fifo': 'FIFO', 'is_socket': 'socket', } def path_type(p: 'Path') -> str: """ Find out what sort of thing a path is. """ assert p.exists(), 'path does not exist' for method, name in path_types.items(): if getattr(p, method)(): return name return 'unknown' Obj = TypeVar('Obj') def smart_deepcopy(obj: Obj) -> Obj: """ Return type as is for immutable built-in types Use obj.copy() for built-in empty collections Use copy.deepcopy() for non-empty collections and unknown objects """ obj_type = obj.__class__ if obj_type in IMMUTABLE_NON_COLLECTIONS_TYPES: return obj # fastest case: obj is immutable and not collection therefore will not be copied anyway try: if not obj and obj_type in BUILTIN_COLLECTIONS: # faster way for empty collections, no need to copy its members return obj if obj_type is tuple else obj.copy() # type: ignore # tuple doesn't have copy method except (TypeError, ValueError, RuntimeError): # do we really dare to catch ALL errors? Seems a bit risky pass return deepcopy(obj) # slowest way when we actually might need a deepcopy def is_valid_field(name: str) -> bool: if not name.startswith('_'): return True return ROOT_KEY == name DUNDER_ATTRIBUTES = { '__annotations__', '__classcell__', '__doc__', '__module__', '__orig_bases__', '__orig_class__', '__qualname__', } def is_valid_private_name(name: str) -> bool: return not is_valid_field(name) and name not in DUNDER_ATTRIBUTES _EMPTY = object() def all_identical(left: Iterable[Any], right: Iterable[Any]) -> bool: """ Check that the items of `left` are the same objects as those in `right`. >>> a, b = object(), object() >>> all_identical([a, b, a], [a, b, a]) True >>> all_identical([a, b, [a]], [a, b, [a]]) # new list object, while "equal" is not "identical" False """ for left_item, right_item in zip_longest(left, right, fillvalue=_EMPTY): if left_item is not right_item: return False return True def assert_never(obj: NoReturn, msg: str) -> NoReturn: """ Helper to make sure that we have covered all possible types. This is mostly useful for ``mypy``, docs: https://mypy.readthedocs.io/en/latest/literal_types.html#exhaustive-checks """ raise TypeError(msg) def get_unique_discriminator_alias(all_aliases: Collection[str], discriminator_key: str) -> str: """Validate that all aliases are the same and if that's the case return the alias""" unique_aliases = set(all_aliases) if len(unique_aliases) > 1: raise ConfigError( f'Aliases for discriminator {discriminator_key!r} must be the same (got {", ".join(sorted(all_aliases))})' ) return unique_aliases.pop() def get_discriminator_alias_and_values(tp: Any, discriminator_key: str) -> Tuple[str, Tuple[str, ...]]: """ Get alias and all valid values in the `Literal` type of the discriminator field `tp` can be a `BaseModel` class or directly an `Annotated` `Union` of many. """ is_root_model = getattr(tp, '__custom_root_type__', False) if get_origin(tp) is Annotated: tp = get_args(tp)[0] if hasattr(tp, '__pydantic_model__'): tp = tp.__pydantic_model__ if is_union(get_origin(tp)): alias, all_values = _get_union_alias_and_all_values(tp, discriminator_key) return alias, tuple(v for values in all_values for v in values) elif is_root_model: union_type = tp.__fields__[ROOT_KEY].type_ alias, all_values = _get_union_alias_and_all_values(union_type, discriminator_key) if len(set(all_values)) > 1: raise ConfigError( f'Field {discriminator_key!r} is not the same for all submodels of {display_as_type(tp)!r}' ) return alias, all_values[0] else: try: t_discriminator_type = tp.__fields__[discriminator_key].type_ except AttributeError as e: raise TypeError(f'Type {tp.__name__!r} is not a valid `BaseModel` or `dataclass`') from e except KeyError as e: raise ConfigError(f'Model {tp.__name__!r} needs a discriminator field for key {discriminator_key!r}') from e if not is_literal_type(t_discriminator_type): raise ConfigError(f'Field {discriminator_key!r} of model {tp.__name__!r} needs to be a `Literal`') return tp.__fields__[discriminator_key].alias, all_literal_values(t_discriminator_type) def _get_union_alias_and_all_values( union_type: Type[Any], discriminator_key: str ) -> Tuple[str, Tuple[Tuple[str, ...], ...]]: zipped_aliases_values = [get_discriminator_alias_and_values(t, discriminator_key) for t in get_args(union_type)] # unzip: [('alias_a',('v1', 'v2)), ('alias_b', ('v3',))] => [('alias_a', 'alias_b'), (('v1', 'v2'), ('v3',))] all_aliases, all_values = zip(*zipped_aliases_values) return get_unique_discriminator_alias(all_aliases, discriminator_key), all_values